咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >H<sub>∞</sub> estimation for u... 收藏

H<sub>∞</sub> estimation for uncertain systems with limited communication capacity

作     者:Gao, Huijun Chen, Tongwen 

作者机构:Harbin Inst Technol Space Control & Inertial Technol Res Ctr Harbin 150001 Peoples R China Univ Alberta Dept Elect & Comp Engn Edmonton AB T6G 2N4 Canada 

出 版 物:《IEEE TRANSACTIONS ON AUTOMATIC CONTROL》 (IEEE Trans Autom Control)

年 卷 期:2007年第52卷第11期

页      面:2070-2084页

核心收录:

学科分类:0808[工学-电气工程] 08[工学] 0811[工学-控制科学与工程] 

基  金:Natural Sciences and Engineering Research Council of Canada, NSERC National Natural Science Foundation of China, NSFC, (60504008, 60528007) National Natural Science Foundation of China, NSFC Alberta Ingenuity Program for New Century Excellent Talents in University, NCET 

主  题:data packet dropout measurement quantization networked control systems (NCSs) robust estimation signal transmission delay 

摘      要:This paper investigates the problem of robust H-infinity estimation for uncertain systems subject to limited communication capacity. The parameter uncertainty belongs to a given convex polytope and the communication limitations include measurement quantization, signal transmission delay, and data packet dropout, which appear typically in a network environment. The problem of H-infinity. filter design is first solved for a nominal system subject to the aforementioned information limitations, which is then extended to the uncertain case based on the notion of quadratic stability, TO further reduce the overdesign in the quadratic framework, this paper also proposes a parameter-dependent filter design procedure, which is much less conservative than the quadratic approach. The quadratic and parameter-dependent approaches provide alternatives for designing robust H-infinity. filters with different degrees of conservativeness and computational complexity. Two examples, including a mass-spring system, are utilized to illustrate the design procedures proposed in this paper.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分