咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Comparison between Merrifield–... 收藏

Comparison between Merrifield–Simmons Index and Wiener Index of Graphs

Comparison between Merrifield–Simmons Index and Wiener Index of Graphs

作     者:Ke Xiang XU Kinkar Chandra DAS Ivan GUTMAN Meng Lu WANG Ke Xiang XU;Kinkar Chandra DAS;Ivan GUTMAN;Meng Lu WANG

作者机构:College of MathematicsNanjing University of Aeronautics&AstronauticsNanjing 210016P.R.China MIIT Key Laboratory of Mathematical Modelling and High Performance Computing of Air VehiclesNanjing 210016P.R.China Department of MathematicsSungkyunkwan UniversitySuwon16419Republic of Korea Facultyof ScienceUniversityof KragujevacP.O.Bor 6034000 KragujevacSerbia 

出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))

年 卷 期:2022年第38卷第12期

页      面:2220-2230页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:supported by NNSF of China (Grant No. 11671202) supported by National Research Foundation funded by the Korean government (Grant No. 2021R1F1A1050) 

主  题:Merrifield–Simmons index Wiener index Cartesian product independence number Fibonacci number universally diametrical graph 

摘      要:The Merrifield–Simmons indexσis the total number of independent vertex sets(including the empty set)of the graph *** Wiener index W is the sum of distances in all unordered pairs of vertices of *** construct some new graphs satisfyingσW and Wσ,*** particular,infinite graphs satisfying Wσare invented with graphs with diameter 2 and infinite ones satisfyingσW are discovered with so-called universally diametrical graphs.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分