咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >连续小波变换结合无参数模型增强框架对时序漂移的近红外光谱建模 收藏

连续小波变换结合无参数模型增强框架对时序漂移的近红外光谱建模

Continuous Wavelet Transform Combined with Parametric-Free Calibration Enhancement Framework for Calibration of Time-shift Near-infrared Spectra

作     者:张进 叶世 吴艾璟 李博岩 李杰 詹莜国 彭海根 徐兴阳 ZHANG Jin;YE Shi-Zhu;WU Ai-Jing;LI Bo-Yan;LI Jie;ZHAN You-Guo;PENG Hai-Gen;XU Xing-Yang

作者机构:贵州医科大学公共卫生与健康学院环境污染与疾病监控教育部重点实验室 贵州中烟工业有限责任公司技术中心 云南省烟草公司昆明市公司 四川威斯派克科技有限公司 

出 版 物:《分析化学》 (Chinese Journal of Analytical Chemistry)

年 卷 期:2022年第50卷第9期

页      面:1391-1398页

核心收录:

学科分类:081704[工学-应用化学] 07[理学] 08[工学] 0817[工学-化学工程与技术] 070302[理学-分析化学] 0703[理学-化学] 

基  金:国家自然科学基金项目(No.22004022) 贵州省科技厅科技计划项目(No.黔科合基础-ZK一般045) 贵州省教育厅普通高等学校青年科技人才成长项目(No.黔教合KY字163)资助 

主  题:近红外光谱 时序漂移 半监督-无参数模型增强 土壤有机质 

摘      要:近红外(Near-infrared, NIR)光谱法具有高效、无损的特点,然而其采集的光谱容易受多种外界因素的影响而发生漂移,导致分析结果出现偏差。时序漂移是一种NIR光谱随检测时间发生持续且有规律漂移的普遍现象。本研究提出了一种时序漂移NIR光谱的建模新方法,将漂移信号分解为背景漂移和样本依赖的时序漂移。分别利用连续小波变换(Continuous wavelet transform, CWT)和半监督-无参数模型增强(Semi-supervised parameter-free calibration enhancement, SS-PFCE)消除NIR光谱中时序背景漂移和样本依赖的时序信号漂移部分,进而实现准确建模。通过对2019年和2020年在云南省境内分别采集的928个和962个土壤样品的时序漂移NIR光谱进行建模,以土壤有机质(Soil organic matter, SOM)含量的预测准确性验证本方法的建模效果。对2019年采集的光谱建模(预测均方根误差(Root mean squared error of prediction, RMSEP)=6.7 g/kg,R2=0.76),预测2020年采集的漂移光谱时出现了较大的偏差(RMSEP=31.3 g/kg,R2=0.50)。通过CWT处理后的光谱建模预测,2020年光谱的预测结果明显变好(RMSEP=11.6 g/kg,R2=0.66);通过SS-PFCE进行模型增强后有了进一步的提升(RMSEP=8.3 g/kg,R2=0.67)。结果表明,CWT结合SS-PFCE能够最大程度消除NIR光谱中的时序漂移,获得较好的建模结果。

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分