版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Tokyo Inst Technol Dept Elect & Elect Engn Tokyo 1528552 Japan
出 版 物:《IEEE TRANSACTIONS ON POWER ELECTRONICS》 (IEEE Trans Power Electron)
年 卷 期:2023年第38卷第1期
页 面:523-537页
核心收录:
主 题:Circuit faults HVDC transmission Testing Capacitors Inductors Dielectrics Switches DC circuit breaker high-voltage direct current (HVdc) high-voltage direct current circuit breaker (HVdcCB) modular multilevel cascaded converter (MMCC) test bench test circuit
摘 要:This article presents a novel circuit configuration of a high-voltage direct current circuit breaker (HVdcCB) test bench that is based on a modified H-bridge modular multilevel cascaded converter (MMCC). The modified MMCC is composed of fewer H-bridge cells, and it can be reconfigured during operation to allow the proposed test bench to output large current or high voltage for the current breaking and dielectric withstand tests. Although simultaneous output of large current and high voltage is not possible, the maximum transient interrupt voltage (TIV) withstand test can be performed with reduced ratings. The controllable output allows generation of complex waveforms to simulate a wide range of fault conditions. Furthermore, the modified MMCC has some inherent safety features that can reduce the need for additional protective equipment in case of operational failure of the HVdcCB. In contrast, the conventional charged capacitor and inductor-based designs cannot generate arbitrary waveforms, are only suitable for current breaking tests, and require additional circuits to generate initial conditions for the HVdcCB. AC short-circuit generator-based designs offer one degree of freedom for control of the output waveforms and can sustain the maximum TIV withstand test. However, the ac output is unsuitable for the dielectric withstand test, and additional circuits are required to provide initial conditions for the HVdcCB. The proposed test bench circuit configuration is verified using a downscaled experimental test bench that consists of a total of nine H-bridge cells with an equivalent switching frequency of 92.5 kHz.