版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Shanghai Univ Engn Sci Shanghai 201620 Peoples R China
出 版 物:《SIGNAL IMAGE AND VIDEO PROCESSING》 (信号,图像与视频处理)
年 卷 期:2023年第17卷第4期
页 面:1019-1026页
核心收录:
学科分类:0808[工学-电气工程] 1002[医学-临床医学] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学]
基 金:National Natural Science Foundation of China [61702322 61772328 61801288]
主 题:Dehaze Derain Generative adversarial networks Variational autoencoder
摘 要:Low-level vision problems, such as single image haze removal and single image rain removal, usually restore a clear image from an input image using a paired dataset. However, for many problems, the paired training dataset will not be available. In this paper, we propose an unpaired image-to-image translation method based on coupled generative adversarial networks (CoGAN) called VAE-CoGAN to solve this problem. Different from the basic CoGAN, we propose a shared-latent space and variational autoencoder (VAE) in framework. We use synthetic datasets and the real-world images to evaluate our method. The extensive evaluation and comparison results show that the proposed method can be effectively applied to numerous low-level vision tasks with favorable performance against the state-of-the-art methods.