咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >VAE-CoGAN: Unpaired image-to-i... 收藏

VAE-CoGAN: Unpaired image-to-image translation for low-level vision

作     者:Zhang, Juan Lang, Xiaoqi Huang, Bo Jiang, Xiaoyan 

作者机构:Shanghai Univ Engn Sci Shanghai 201620 Peoples R China 

出 版 物:《SIGNAL IMAGE AND VIDEO PROCESSING》 (信号,图像与视频处理)

年 卷 期:2023年第17卷第4期

页      面:1019-1026页

核心收录:

学科分类:0808[工学-电气工程] 1002[医学-临床医学] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 

基  金:National Natural Science Foundation of China [61702322  61772328  61801288] 

主  题:Dehaze Derain Generative adversarial networks Variational autoencoder 

摘      要:Low-level vision problems, such as single image haze removal and single image rain removal, usually restore a clear image from an input image using a paired dataset. However, for many problems, the paired training dataset will not be available. In this paper, we propose an unpaired image-to-image translation method based on coupled generative adversarial networks (CoGAN) called VAE-CoGAN to solve this problem. Different from the basic CoGAN, we propose a shared-latent space and variational autoencoder (VAE) in framework. We use synthetic datasets and the real-world images to evaluate our method. The extensive evaluation and comparison results show that the proposed method can be effectively applied to numerous low-level vision tasks with favorable performance against the state-of-the-art methods.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分