版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:CAS Key Laboratory of Molecular Imagingthe State Key Laboratory of Management and Control for Complex SystemsInstitute of AutomationChinese Academy of SciencesBeijing 100190China Beijing Key Laboratory of Molecular ImagingBeijing 100190China University of Chinese Academy of SciencesBeijing 100049China Medical Imaging Centerthe First Affiliated HospitalJinan UniversityGuangdong 510632China Beijing Advanced Innovation Center for Big Data-Based Precision MedicineSchool of MedicineBeihang UniversityBeijing 100083China
出 版 物:《Visual Computing for Industry,Biomedicine,and Art》 (工医艺的可视计算(英文))
年 卷 期:2022年第5卷第1期
页 面:290-302页
核心收录:
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:This work was supported in part by the National Key Research and Development Program of China,Nos.2017YFA0700401 and 2017YFA0205200 the National Natural Science Foundation of China,Nos.62027901,81827808,81527805,and 81671851 the CAS Youth Innovation Promotion Association,No.2018167 the CAS Key Technology Talent Program and the Project of High-Level Talents Team Introduction in Zhuhai City,No.Zhuhai HLHPTP201703
主 题:Magnetic particle imaging Image reconstruction System matrix X-space
摘 要:Magnetic particle imaging(MPI)is an emerging molecular imaging technique with high sensitivity and temporal-spatial *** reconstruction is an important research topic in MPI,which converts an induced voltage signal into the image of superparamagnetic iron oxide particles concentration *** reconstruction primarily involves system matrix-and x-space-based *** this review,we provide a detailed overview of the research status and future research trends of these two *** addition,we review the application of deep learning methods in MPI reconstruction and the current open sources of ***,research opinions on MPI reconstruction are *** hope this review promotes the use of MPI in clinical applications.