咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >TrustGWAS: A full-process work... 收藏

TrustGWAS: A full-process workflow for encrypted GWAS using multi-key homomorphic encryption and pseudorandom number perturbation

作     者:Yang, Meng Zhang, Chuwen Wang, Xiaoji Liu, Xingmin Li, Shisen Huang, Jianye Feng, Zhimin Sun, Xiaohui Chen, Fang Yang, Shuang Ni, Ming Li, Lin Cao, Yanan Mu, Feng 

作者机构:BGI Shenzhen MGI Shenzhen 518083 Peoples R China Univ Copenhagen Dept Biol DK-2200 Copenhagen Denmark Shanghai Jiao Tong Univ Ruijin HospRes Unit Clin & Basic Res Metab Dis Chinese Acad Med SciSch MedNatl Clin Res Ctr Me Dept Endocrine & Metab DisShanghai Inst Endocrin Shanghai 200025 Peoples R China SJTU Inst Translat Med Natl Ctr Translat Med Shanghai Shanghai 200240 Peoples R China BGI Shenzhen Shenzhen 518083 Peoples R China BGI Shenzen MGI QingDao Qingdao 266000 Peoples R China SJTU BGI Innovat Res Ctr Shanghai Peoples R China 

出 版 物:《CELL SYSTEMS》 (Cell Syst.)

年 卷 期:2022年第13卷第9期

页      面:752-+页

核心收录:

学科分类:0710[理学-生物学] 07[理学] 071009[理学-细胞生物学] 09[农学] 0901[农学-作物学] 090102[农学-作物遗传育种] 

基  金:Ministry of Science and Technology of the People's Republic of China [SQ2020YFF0426292] National Key R&D Program of China [2020YFA0112800, 2020YFA0112801] CAMS Innovation Fund for Medical Sciences [2020-12M-5-002] 

主  题:TrustGWAS multi-key homomorphic encryption GWAS CKKS privacy-preserving computation pseudorandom number genome privacy 

摘      要:The statistical power of genome-wide association studies (GWASs) is affected by the effective sample size. However, the privacy and security concerns associated with individual-level genotype data pose great challenges for cross-institutional cooperation. The full-process cryptographic solutions are in demand but have not been covered, especially the essential principal-component analysis (PCA). Here, we present TrustGWAS, a complete solution for secure, large-scale GWAS, recapitulating gold standard results against PLINK without compromising privacy and supporting basic PLINK steps including quality control, linkage disequilibrium pruning, PCA, chi-square test, Cochran-Armitage trend test, covariate-supported logistic regression and linear regression, and their sequential combinations. TrustGWAS leverages pseudorandom number perturbations for PCA and multiparty scheme of multi-key homomorphic encryption for all other modules. TrustGWAS can evaluate 100,000 individuals with 1 million variants and complete QC-LD-PCAregression workflow within 50 h. We further successfully discover gene loci associated with fasting blood glucose, consistent with the findings of the ChinaMAP project.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分