咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Check and Link: Pairwise Lesio... 收藏
arXiv

Check and Link: Pairwise Lesion Correspondence Guides Mammogram Mass Detection

作     者:Zhao, Ziwei Wang, Dong Chen, Yihong Wang, Ziteng Wang, Liwei 

作者机构:Center for Data Science Peking University China Key Laboratory of Machine Perception MOE School of Artificial Intelligence Peking University China Yizhun Medical AI Co. Ltd China  China Peng Cheng Laboratory China 

出 版 物:《arXiv》 (arXiv)

年 卷 期:2022年

核心收录:

主  题:Object detection 

摘      要:Detecting mass in mammogram is significant due to the high occurrence and mortality of breast cancer. In mammogram mass detection, modeling pairwise lesion correspondence explicitly is particularly important. However, most of the existing methods build relatively coarse correspondence and have not utilized correspondence supervision. In this paper, we propose a new transformer-based framework CL-Net to learn lesion detection and pairwise correspondence in an end-to-end manner. In CL-Net, View-Interactive Lesion Detector is proposed to achieve dynamic interaction across candidates of cross views, while Lesion Linker employs the correspondence supervision to guide the interaction process more accurately. The combination of these two designs accomplishes precise understanding of pairwise lesion correspondence for mammograms. Experiments show that CL-Net yields state-of-the-art performance on the public DDSM dataset and our in-house dataset. Moreover, it outperforms previous methods by a large margin in low FPI regime. Copyright © 2022, The Authors. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分