咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >ClarifyNet: A high-pass and lo... 收藏

ClarifyNet: A high-pass and low-pass filtering based CNN for single image dehazing

作     者:Susladkar, Onkar Deshmukh, Gayatri Nag, Subhrajit Mantravadi, Ananya Makwana, Dhruv Ravichandran, Sujitha Teja, R. Sai Chandra Chavhan, Gajanan H. Mohan, C. Krishna Mittal, Sparsh 

作者机构:Vishwakarma Inst Informat Technol Pune India IIT Hyderabad Hyderabad India IIIT Raichur Raichur India CKM Vigil Pvt Ltd Hyderabad India NIT Trichy Trichy India IIT Roorkee Roorkee India 

出 版 物:《JOURNAL OF SYSTEMS ARCHITECTURE》 (系统结构杂志)

年 卷 期:2022年第132卷第0期

核心收录:

学科分类:08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:WNI WxBunka Foundation, Japan IIT Roorkee, India [FIG-100874] 

主  题:Single-image dehazing Convolutional neural network Encoder-decoder architecture Attention Low-pass filter High-pass filter 

摘      要:Dehazing refers to removing the haze and restoring the details from hazy images. In this paper, we propose ClarifyNet, a novel, end-to-end trainable, convolutional neural network architecture for single image dehazing. We note that a high-pass filter detects sharp edges, texture, and other fine details in the image, whereas a low-pass filter detects color and contrast information. Based on this observation, our key idea is to train ClarifyNet on ground-truth haze-free images, low-pass filtered images, and high-pass filtered images. Based on this observation, we present a shared-encoder multi-decoder model ClarifyNet which employs interconnected parallelization. While training, ground-truth haze-free images, low-pass filtered images, and high-pass filtered images undergo multi-stage filter fusion and attention. By utilizing a weighted loss function composed of SSIM loss and L1 loss, we extract and propagate complementary features. We comprehensively evaluate ClarifyNet on I-HAZE, O-HAZE, Dense-Haze, NH-HAZE, SOTS-Indoor, SOTS-Outdoor, HSTS, and Middlebury datasets. We use PSNR and SSIM metrics and compare the results with previous works. For most datasets, ClarifyNet provides the highest scores. On using EfficientNet-B6 as the backbone, ClarifyNet has 18 M parameters (model size of similar to 71 MB) and a throughput of 8 frames-per-second while processing images of size 2048 x 1024.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分