咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Auto tuned PID and neural netw... 收藏

Auto tuned PID and neural network predictive controller for a flow loop pilot plant

作     者:Patil, Sanjay R. Agashe, Sudhir D. 

作者机构:Department of Instrumentation and Control Engineering College of Engineering Pune MS Pune 411005 India 

出 版 物:《Materials Today: Proceedings》 (Mater. Today Proc.)

年 卷 期:2023年第72卷

页      面:754-760页

核心收录:

学科分类:08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学] 0813[工学-建筑学] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:Pilot plants 

摘      要:This paper presents an advanced control strategy that uses the neural network (NN) predictive controller to govern the dynamics of a Flow loop pilot plant. The set point tracking using NN Predictive controller and conventional PID strategies are investigated. The control objective is to keep the outlet flow of the Single Input Single Output Flow loop at a reference value. An orifice meter as a flow measuring device and Variable Frequency Drive as a final control element is selected to collect Input, Output data. System Identification toolbox in MATLAB is used to construct the model of a flow loop from measured input–output data. Various models are estimated, validated and realized that the transfer function model gives the best fit. This model is used to build the PID and NN Predictive controller. NN predictive controller parameters are set, by the designer s expertise. The performance of a NN predictive controller is then compared with the conventional auto-tuned PID controller. Experimental results are presented, which emphasizes the superiority and effectiveness of the NN predictive controller. © 2022

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分