咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Fourier Continuation Discontin... 收藏

Fourier Continuation Discontinuous Galerkin Methods for Linear Hyperbolic Problems

作     者:Kiera van der Sande Daniel Appelö Nathan Albin Kiera van der Sande;Daniel Appelö;Nathan Albin

作者机构:Department of Applied MathematicsUniversity of Colorado BoulderBoulderCOUSA Department of Computational MathematicsScience&EngineeringMichigan State UniversityEast LansingUSA Department of MathematicsMichigan State UniversityEast LansingUSA Department of MathematicsKansas State UniversityManhattanKSUSA 

出 版 物:《Communications on Applied Mathematics and Computation》 (应用数学与计算数学学报(英文))

年 卷 期:2023年第5卷第4期

页      面:1385-1405页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:National Science Foundation, NSF, (DMS-1913076) National Science Foundation, NSF Directorate for Mathematical and Physical Sciences, MPS, MPS/OAD, (1913076) Directorate for Mathematical and Physical Sciences, MPS, MPS/OAD 

主  题:Discontinuous Galerkin Fourier continuation(FC) High order method 

摘      要:Fourier continuation(FC)is an approach used to create periodic extensions of non-periodic functions to obtain highly-accurate Fourier *** methods have been used in partial differential equation(PDE)-solvers and have demonstrated high-order convergence and spectrally accurate dispersion relations in numerical *** Galerkin(DG)methods are increasingly used for solving PDEs and,as all Galerkin formulations,come with a strong framework for proving the stability and the *** we propose the use of FC in forming a new basis for the DG framework.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分