版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Jin Innovation Seattle United States
出 版 物:《arXiv》 (arXiv)
年 卷 期:2021年
核心收录:
主 题:Learning algorithms
摘 要:Evidence-based Prescriptive Analytics (EbPA) is necessary to determine optimal operational set-points that will improve business productivity. EbPA results from what-if analysis and counterfactual experimentation on CAUSAL Digital Twins (CDTs) that quantify cause-effect relationships in the DYNAMICS of a system of connected assets. We describe the basics of Causality and Causal Graphs and develop a Learning Causal Digital Twin (LCDT) solution;our algorithm uses a simple recurrent neural network with some innovative modifications incorporating Causal Graph simulation. Since LCDT is a learning digital twin where parameters are learned online in real-time with minimal pre-configuration, the work of deploying digital twins will be significantly *** Codes 93-05 Copyright © 2021, The Authors. All rights reserved.