版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:State Key Laboratory of Advanced Optical Communications System and Networks Department of Electronics School of Electronics Engineering and Computer Science Peking University Beijing100871 China Department of Electrical and Computer Engineering University of California Santa BarbaraCA93106 United States Peng Cheng Laboratory Shenzhen518055 China Frontiers Science Center for Nano-optoelectronics Peking University Beijing100871 China
出 版 物:《arXiv》 (arXiv)
年 卷 期:2021年
核心收录:
主 题:Light transmission
摘 要:Microcombs have sparked a surge of applications over the last decade, ranging from optical communications to metrology. Despite their diverse deployment, most microcomb-based systems rely on a tremendous amount of bulk equipment to fulfill their desired functions, which is rather complicated, expensive and power-consuming. On the other hand, foundry-based silicon photonics (SiPh) has had remarkable success in providing versatile functionality in a scalable and low-cost manner, but its available chip-based light sources lack the capacity for parallelization, which limits the scope of SiPh applications. Here, we bridge these two technologies by using a power-efficient and operationally-simple AlGaAs on insulator microcomb source to drive CMOS SiPh engines. We present two important chip-scale photonic systems for optical data transmissions and microwave photonics respectively: The first microcomb-based integrated photonic data link is demonstrated, based on a pulse-amplitude 4-level modulation scheme with 2 Tbps aggregate rate, and a highly reconfigurable microwave photonic filter with unprecedented integration level is constructed, using a time stretch scheme. Such synergy of microcomb and SiPh integrated components is an essential step towards the next generation of fully integrated photonic systems. Copyright © 2021, The Authors. All rights reserved.