版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:MIT Comp Sci & Artificial Intelligence Lab Cambridge MA 02139 USA MIT Dept Nucl Sci & Engn Cambridge MA 02139 USA CSIRO Robot & Autonomous Syst Grp DATA61 Brisbane Qld 4069 Australia Northeastern Univ Dept Elect & Comp Engn Boston MA 02115 USA Northeastern Univ Dept Math Boston MA 02115 USA NavAbility Boston MA 02110 USA MIT Dept Aeronaut & Astronaut Engn Cambridge MA 02139 USA
出 版 物:《IEEE TRANSACTIONS ON ROBOTICS》 (IEEE Trans. Rob.)
年 卷 期:2023年第39卷第2期
页 面:1458-1475页
核心收录:
学科分类:0808[工学-电气工程] 08[工学] 0811[工学-控制科学与工程]
主 题:Simultaneous localization and mapping Inference algorithms Approximation algorithms Task analysis Particle separators Belief propagation Random variables Bayes tree distribution estimation non-Gaussian normalizing flows SLAM
摘 要:This paper presents normalizing flows for incremental smoothing and mapping (NF-iSAM), a novel algorithm for inferring the full posterior distribution in SLAM problems with nonlinear measurement models and non-Gaussian factors. NF-iSAM exploits the expressive power of neural networks, and trains normalizing flows to model and sample the full posterior. By leveraging the Bayes tree, NF-iSAM enables efficient incremental updates similar to iSAM2, albeit in the more challenging non-Gaussian setting. We demonstrate the advantages of NF-iSAM over state-of-the-art point and distribution estimation algorithms using range-only SLAM problems with data association ambiguity. NF-iSAM presents superior accuracy in describing the posterior beliefs of continuous variables (e.g., position) and discrete variables (e.g., data association).