咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Apple Silicon Performance in S... 收藏
arXiv

Apple Silicon Performance in Scientific Computing

作     者:Kenyon, Connor Capano, Collin 

作者机构:Physics Department The Center for Scientific Computing and Data Science Research The University of Massachusetts Dartmouth North DartmouthMA02747 United States  HannoverD-30167 Germany 

出 版 物:《arXiv》 (arXiv)

年 卷 期:2022年

核心收录:

主  题:Fruits 

摘      要:With the release of the Apple Silicon System-on-a-Chip processors, and the impressive performance shown in general use by both the M1 and M1 Ultra, the potential use for Apple Silicon processors in scientific computing is explored. Both the M1 and M1 Ultra are compared to current state-of-the-art data-center GPUs, including an NVIDIA V100 with PCIe, an NVIDIA V100 with NVLink, and an NVIDIA A100 with PCIe. The scientific performance is measured using the Scalable Heterogeneous Computing (SHOC) benchmark suite using OpenCL benchmarks. We find that both M1 processors out perform the GPUs in all benchmarks. Copyright © 2022, The Authors. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分