咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >An Anomaly Detection Method fo... 收藏

An Anomaly Detection Method for Satellites Using Monte Carlo Dropout

作     者:Sadr, Mohammad Amin Maleki Zhu, Yeying Hu, Peng 

作者机构:Univ Waterloo Dept Stat & Actuarial Sci Waterloo ON N2L 3G1 Canada Natl Res Council Canada Digital Technol Res Ctr Ottawa ON K1A 0R6 Canada 

出 版 物:《IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS》 (IEEE Trans. Aerosp. Electron. Syst.)

年 卷 期:2023年第59卷第2期

页      面:2044-2052页

核心收录:

学科分类:0810[工学-信息与通信工程] 0808[工学-电气工程] 08[工学] 0825[工学-航空宇航科学与技术] 

基  金:High-Throughput and Secure Networks Challenge program of National Research Council Canada [CH-HTSN-418] 

主  题:Time series analysis Uncertainty Artificial neural networks Satellites Telemetry Bayes methods Prediction algorithms Anomaly detection satellite communications telemetry time series data uncertainty estimation 

摘      要:Recently, there has been a significant amount of interest in satellite telemetry anomaly detection (AD) using neural networks (NN). For AD purposes, the current approaches focus on either forecasting or reconstruction of the time series, and they cannot measure the level of reliability or the probability of correct detection. Although the Bayesian neural network (BNN)-based approaches are well known for time series uncertainty estimation, they are computationally intractable. In this article, we present a tractable approximation for BNN based on the Monte Carlo (MC) dropout method for capturing the uncertainty in the satellite telemetry time series, without sacrificing accuracy. For time series forecasting, we employ an NN, which consists of several long short-term memory (LSTM) layers followed by various dense layers. We employ the MC dropout inside each LSTM layer and before the dense layers for uncertainty estimation. With the proposed uncertainty region and by utilizing a postprocessing filter, we can effectively capture the anomaly points. Numerical results show that our proposed time series AD approach outperforms the existing methods from both prediction accuracy and AD perspectives.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分