版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University China Langboat Technology China
出 版 物:《arXiv》 (arXiv)
年 卷 期:2022年
核心收录:
摘 要:Discriminative pre-trained language models (PrLMs) can be generalized as denoising auto-encoders that work with two procedures, ennoising and denoising. First, an ennoising process corrupts texts with arbitrary noising functions to construct training instances. Then, a denoising language model is trained to restore the corrupted tokens. Existing studies have made progress by optimizing independent strategies of either ennoising or denosing. They treat training instances equally throughout the training process, with little attention on the individual contribution of those instances. To model explicit signals of instance contribution, this work proposes to estimate the complexity of restoring the original sentences from corrupted ones in language model pre-training. The estimations involve the corruption degree in the ennoising data construction process and the prediction confidence in the denoising counterpart. Experimental results on natural language understanding and reading comprehension benchmarks show that our approach improves pre-training efficiency, effectiveness, and robustness. Copyright © 2022, The Authors. All rights reserved.