版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:School of Computer ScienceWuhan UniversityWuhan430072China School of Cyber Science and EngineeringWuhan UniversityWuhan430072China
出 版 物:《Computer Modeling in Engineering & Sciences》 (工程与科学中的计算机建模(英文))
年 卷 期:2023年第135卷第6期
页 面:2025-2045页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:NSFC http://www.nsfc.gov.cn/for the support through Grants No.61877045 Fundamental Research Project of Shenzhen Science and Technology Program for the support through Grants No.JCYJ2016042815-3956266
主 题:Dendritic cell algorithm combinatorial optimization grouping problems grouping genetic algorithm
摘 要:The artificial immune system,an excellent prototype for developingMachine Learning,is inspired by the function of the powerful natural immune *** one of the prevalent classifiers,the Dendritic Cell Algorithm(DCA)has been widely used to solve binary problems in the real *** classification of DCA depends on a data preprocessing procedure to generate input signals,where feature selection and signal categorization are themain ***,the results of these studies also show that the signal generation of DCA is relatively weak,and all of them utilized a filter strategy to remove unimportant *** filtered features and applying expertise may not produce an optimal classification *** overcome these limitations,this study models feature selection and signal categorization into feature grouping *** study hybridizes Grouping Genetic Algorithm(GGA)with DCA to propose a novel DCA version,GGA-DCA,for accomplishing feature selection and signal categorization in a search *** GGA-DCA aims to search for the optimal feature grouping scheme without expertise *** this study,the data coding and operators of GGA are redefined for grouping *** experimental results show that the proposed algorithm has significant advantages over the compared DCA expansion algorithms in terms of signal generation.