咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Robust homecare service capaci... 收藏

Robust homecare service capacity planning

作     者:Xie, Weiping Liu, Tianqi Li, Xiang Zheng, Chenyang 

作者机构:Case Western Reserve Univ Dept Math Appl Math & Stat Cleveland OH USA Capital Univ Econ & Business Sch Management & Engn Beijing Peoples R China Univ Chinese Acad Sci Sch Econ & Management Beijing Peoples R China Univ Wisconsin Madison Dept Ind & Syst Engn Madison WI USA 

出 版 物:《COMPUTERS & OPERATIONS RESEARCH》 (计算机与运筹学研究)

年 卷 期:2023年第154卷第1期

核心收录:

学科分类:1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:National Natural Science Foundation of China (NNSFC) [71922020, 72171221] NNSFC, China 

主  题:Home health care Linear programming Adaptive robust optimization Benders decomposition 

摘      要:We study a home healthcare planning problem under the demand uncertainty, where the service type (authorization) and capacity are the first-stage decision and the homecare resource allocation is the second -stage decision which adapts to the demand realizations. We model the problem using an adaptive robust optimization technique where we construct a budget uncertainty set of demand using the well-known Mahalanobis Distance. We analyze the impact of the authorization, capacity decisions as well as the budget (robustness level) of the Mahalanobis uncertainty set onto the worst-case revenue. To solve the model, we develop a Benders decomposition algorithm that solves a pair of a mixed-integer second-order cone program (MISOCP) and a mixed integer linear program (MILP) in each iteration, both can be handled by off-the-shelf MIP solvers, with finite-step convergence. We also develop an affine approximation approach that directly solves one instance of MISOCP. Finally, sufficient numerical studies demonstrate the effectiveness of our model and the solution approaches.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分