咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Cross-modal transformer with l... 收藏

Cross-modal transformer with language query for referring image segmentation

作     者:Zhang, Wenjing Tan, Quange Li, Pengxin Zhang, Qi Wang, Rong 

作者机构:Peoples Publ Secur Univ China Sch Informat & Cyber Secur Beijing 434020 Peoples R China Minist Publ Secur Key Lab Secur Prevent Technol & Risk Assessment Beijing 434020 Peoples R China 

出 版 物:《NEUROCOMPUTING》 (神经计算)

年 卷 期:2023年第536卷

页      面:191-205页

核心收录:

学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:National Natural Science Foundation of China Fundamental Research Funds for the Central Universities [2019JKF426] 

主  题:Referring image segmentation Deep interaction Cross -modal transformer Semantics -guided detail enhancement 

摘      要:Referring image segmentation (RIS) aims to predict a segmentation mask for a target specified by a nat-ural language expression. However, the existing methods failed to implement deep interaction between vision and language is needed in RIS, resulting inaccurate segmentation. To address the problem, a cross -modal transformer (CMT) with language queries for referring image segmentation is proposed. First, a cross-modal encoder of CMT is designed for intra-modal and inter-modal interaction, capturing context-aware visual features. Secondly, to generate compact visual-aware language queries, a language-query encoder (LQ) embeds key visual cues into linguistic features. In particular, the combina-tion of the cross-modal encoder and language query encoder realizes the mutual guidance of vision and language. Finally, the cross-modal decoder of CMT is constructed to learn multimodal features of the ref-erent from the context-aware visual features and visual-aware language queries. In addition, a semantics-guided detail enhancement (SDE) module is constructed to fuse the semantic-rich multimodal features with detail-rich low-level visual features, which supplements the spatial details of the predicted segmentation masks. Extensive experiments on four referring image segmentation datasets demonstrate the effectiveness of the proposed method.(c) 2023 Elsevier B.V. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分