版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:中国矿业大学信息与控制工程学院江苏徐州221116 华南理工大学计算机科学与工程学院广州510006
出 版 物:《计算机学报》 (Chinese Journal of Computers)
年 卷 期:2023年第46卷第4期
页 面:843-855页
核心收录:
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家自然科学基金项目(62176259,61976215) 江苏省重点研发计划项目(BE2022095)资助
主 题:离线Actor-Critic 行为正则化 斜对称JS散度 分布偏移
摘 要:行为正则化Actor-Critic(BRAC)是一种离线强化学习算法,通过将当前策略与行为策略之间的Kullback-Leibler(KL)散度作为策略目标函数的正则化项来缓解分布偏移问题.但是,由于KL散度是一种无界的分布差异度量,在策略差异过大时,策略目标函数中的累积期望回报项将仅对策略改进发挥有限的作用,从而导致最终学到的策略性能较差.针对该问题,将当前策略与行为策略之间的斜对称Jensen-Shannon(JS)散度作为策略目标函数的正则化项,提出了一种广义行为正则化离线Actor-Critic(GOACBR)算法.理论分析表明:由于斜对称JS散度有界,将其作为正则化项有助于降低策略性能差异.进一步,针对行为策略未知导致难以直接计算当前策略和行为策略间斜对称JS散度的问题,设计了一个辅助网络来对其进行间接估计.最后,给出了GOACBR的收敛性理论证明.在D4RL基准数据集上的评估结果表明:相较于BRAC,GOACBR在所有测试任务上获得的平均累积回报总和提升了289.8%.相关代码公布在https://***/houge1996/GOAC.