版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Czech Tech Univ Dept Comp Sci Prague Czech Republic Univ Calif San Diego Dept Elect Engn La Jolla CA 92093 USA Purdue Univ Sch Ind Engn W Lafayette IN 47907 USA
出 版 物:《IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS》 (IEEE Trans. Control Netw. Syst.)
年 卷 期:2023年第10卷第4期
页 面:1796-1804页
核心收录:
学科分类:0808[工学-电气工程] 08[工学] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:OP VVV
主 题:Optimization Stochastic processes Convergence Delays Directed graphs Noise measurement Linear programming Decentralized applications distributed computing federated learning machine learning optimization optimization methods
摘 要:In this article, we consider a decentralized stochastic optimization problem over a network of agents, modeled as a directed graph: Agents aim to asynchronously minimize the average of their individual losses (possibly nonconvex), each one having access only to a noisy estimate of the gradient of its own function. We propose an asynchronous distributed algorithm for such a class of problems. The algorithm combines stochastic gradients with tracking in an asynchronous push-sum framework and obtains a sublinear convergence rate, matching the rate of the centralized stochastic gradient descent applied to the nonconvex minimization. Our experiments on a nonconvex image classification task using a convolutional neural network validate the convergence of our proposed algorithm across a different number of nodes and graph connectivity percentages.