咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Decentralized Asynchronous Non... 收藏

Decentralized Asynchronous Nonconvex Stochastic Optimization on Directed Graphs

作     者:Kungurtsev, Vyacheslav Morafah, Mahdi Javidi, Tara Scutari, Gesualdo 

作者机构:Czech Tech Univ Dept Comp Sci Prague Czech Republic Univ Calif San Diego Dept Elect Engn La Jolla CA 92093 USA Purdue Univ Sch Ind Engn W Lafayette IN 47907 USA 

出 版 物:《IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS》 (IEEE Trans. Control Netw. Syst.)

年 卷 期:2023年第10卷第4期

页      面:1796-1804页

核心收录:

学科分类:0808[工学-电气工程] 08[工学] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:OP VVV 

主  题:Optimization Stochastic processes Convergence Delays Directed graphs Noise measurement Linear programming Decentralized applications distributed computing federated learning machine learning optimization optimization methods 

摘      要:In this article, we consider a decentralized stochastic optimization problem over a network of agents, modeled as a directed graph: Agents aim to asynchronously minimize the average of their individual losses (possibly nonconvex), each one having access only to a noisy estimate of the gradient of its own function. We propose an asynchronous distributed algorithm for such a class of problems. The algorithm combines stochastic gradients with tracking in an asynchronous push-sum framework and obtains a sublinear convergence rate, matching the rate of the centralized stochastic gradient descent applied to the nonconvex minimization. Our experiments on a nonconvex image classification task using a convolutional neural network validate the convergence of our proposed algorithm across a different number of nodes and graph connectivity percentages.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分