版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:RWTH Aachen University Laboratory for Machine Tools and Production Engineering Campus-Boulevard 30 52074 Aachen Germany RWTH Aachen University Institute for Plastics Processing Seffenter Weg 201 52074 Aachen Germany RWTH Aachen University Institut für Textiltechnik Otto-Blumenthal-Straße 1 52074 Aachen Germany Fraunhofer Institute for Production Technology IPT Steinbachstraße 17 52074 Aachen Germany
出 版 物:《Procedia CIRP》
年 卷 期:2021年第104卷
页 面:1251-1256页
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学]
主 题:Predictive Quality Process Data Production Data Meta-Model Data Analytics
摘 要:Predictive Analytics is increasingly applied as a basis for decision-making in product and process optimization of manufacturing companies. In this context, Predictive Quality enables companies to make data-driven predictions of product quality, with data integration being one of the most significant challenges. This paper provides insights into exemplary applications of a flexible process-independent meta-model to integrate data for multi-step manufacturing processes. Three application use cases from different production domains are presented, demonstrating the meta-model’s applicability for Predictive Quality applications in manufacturing companies without restrictions regarding the product or manufacturing process.