版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Sapienza Univ Rome Piazzale Aldo Moro 5 Rome Italy
出 版 物:《ADVANCES IN DATA ANALYSIS AND CLASSIFICATION》 (数据分析与分类进展)
年 卷 期:2024年第18卷第2期
页 面:381-407页
核心收录:
学科分类:081203[工学-计算机应用技术] 08[工学] 0714[理学-统计学(可授理学、经济学学位)] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:Mixture models Factor analyzers Composite Likelihood EM algorithm Mixed-type data
摘 要:In this paper, we propose twelve parsimonious models for clustering mixed-type (ordinal and continuous) data. The dependence among the different types of variables is modeled by assuming that ordinal and continuous data follow a multivariate finite mixture of Gaussians, where the ordinal variables are a discretization of some continuous variates of the mixture. The general class of parsimonious models is based on a factor decomposition of the component-specific covariance matrices. Parameter estimation is carried out using a EM-type algorithm based on composite likelihood. The proposal is evaluated through a simulation study and an application to real data.