咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Composite likelihood methods f... 收藏

Composite likelihood methods for parsimonious model-based clustering of mixed-type data

作     者:Ranalli, Monia Rocci, Roberto 

作者机构:Sapienza Univ Rome Piazzale Aldo Moro 5 Rome Italy 

出 版 物:《ADVANCES IN DATA ANALYSIS AND CLASSIFICATION》 (数据分析与分类进展)

年 卷 期:2024年第18卷第2期

页      面:381-407页

核心收录:

学科分类:081203[工学-计算机应用技术] 08[工学] 0714[理学-统计学(可授理学、经济学学位)] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:We would like to thank the three reviewers and the editor for their helpful comments and suggestions. We believe that they helped us to improve the quality of the manuscript 

主  题:Mixture models Factor analyzers Composite Likelihood EM algorithm Mixed-type data 

摘      要:In this paper, we propose twelve parsimonious models for clustering mixed-type (ordinal and continuous) data. The dependence among the different types of variables is modeled by assuming that ordinal and continuous data follow a multivariate finite mixture of Gaussians, where the ordinal variables are a discretization of some continuous variates of the mixture. The general class of parsimonious models is based on a factor decomposition of the component-specific covariance matrices. Parameter estimation is carried out using a EM-type algorithm based on composite likelihood. The proposal is evaluated through a simulation study and an application to real data.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分