版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Centre for Quantum Technologies National University of Singapore 3 Science Drive 2 Singapore 117543 Institute of High Performance Computing Agency for Science Technology & Research (A*STAR) 1 Fusionopolis Way 16-16 Connexis Singapore 138632 School of Electrical and Computer Engineering Technical University of Crete 73100 Chania Greece AngelQ Quantum Computing 531A Upper Cross Street 04-95 Hong Lim Complex Singapore 051531
出 版 物:《Physical Review A》 (Phys. Rev. A)
年 卷 期:2023年第108卷第2期
页 面:022416-022416页
核心收录:
基 金:National Research Foundation Singapore, NRF European Union's Horizon Programme, (HORIZON-CL4-2021-DIGITALEMERGING-02-10, 101080085) European Commission, EC, (101080085) Agency for Science, Technology and Research, A*STAR, (21709, NRF2021-QEP2-02-P02)
主 题:Quantum algorithms for chemical calculations
摘 要:Fermionic Ansatz state preparation is a critical subroutine in many quantum algorithms such as the variational quantum eigensolver for quantum chemistry and condensed-matter applications. The shallowest circuit depth needed to prepare Slater determinants and correlated states to date scales at least linearly with respect to the system size N. Inspired by data-loading circuits developed for quantum machine learning, we propose an alternate paradigm that provides shallower, yet scalable, O(dlog22N) two-qubit gate-depth circuits to prepare such states with d fermions, offering a subexponential reduction in N over existing approaches in second quantization, enabling high-accuracy studies of d≪O(N/log22N) fermionic systems with larger basis sets on near-term quantum devices.