版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Tongji Univ Sch Automot Studies Shanghai 201804 Peoples R China
出 版 物:《SENSORS》 (传感器)
年 卷 期:2023年第23卷第12期
页 面:5496-5496页
核心收录:
学科分类:0710[理学-生物学] 071010[理学-生物化学与分子生物学] 0808[工学-电气工程] 07[理学] 0804[工学-仪器科学与技术] 0703[理学-化学]
基 金:National Natural Science Foundation of China, NSFC, (52275123) National Natural Science Foundation of China, NSFC Science and Technology Support Program of Jiangsu Province, (BE2021006-3) Science and Technology Support Program of Jiangsu Province UK Research and Innovation, UKRI, (77777) UK Research and Innovation, UKRI
主 题:4WID-4WIS EVs trajectory tracking control multi-objective coordinated control mutant particle swarm optimization (MPSO)
摘 要:In order to improve the stability and economy of 4WID-4WIS (four-wheel independent drive-four-wheel independent steering) electric vehicles in trajectory tracking, this paper proposes a trajectory tracking coordinated control strategy considering energy consumption economy. First, a hierarchical chassis coordinated control architecture is designed, which includes target planning layer, and coordinated control layer. Then, the trajectory tracking control is decoupled based on the decentralized control structure. Expert PID and Model Predictive Control (MPC) are employed to realize longitudinal velocity tracking and lateral path tracking, respectively, which calculate generalized forces and moments. In addition, with the objective of optimal overall efficiency, the optimal torque distribution for each wheel is achieved using the Mutant Particle Swarm Optimization (MPSO) algorithm. Additionally, the modified Ackermann theory is used to distribute wheel angles. Finally, the control strategy is simulated and verified using Simulink. Comparing the control results of the average distribution strategy and the wheel load distribution strategy, it can be concluded that the proposed coordinated control not only provides good trajectory tracking but also greatly improves the overall efficiency of the motor operating points, which enhances the energy economy and realizes the multi-objective coordinated control of the chassis.