咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >DECENTRALIZED DIFFUSION-BASED ... 收藏
arXiv

DECENTRALIZED DIFFUSION-BASED LEARNING UNDER NON-PARAMETRIC LIMITED PRIOR KNOWLEDGE

作     者:Wachel, Pawel Kowalczyk, Krzysztof Rojas, Cristian R. 

作者机构:Department of Control Systems and Mechatronics Wroclaw University of Science and Technology Wroclaw Poland School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm Sweden 

出 版 物:《arXiv》 (arXiv)

年 卷 期:2023年

核心收录:

主  题:Electronic data interchange 

摘      要:We study the problem of diffusion-based network learning of a nonlinear phenomenon, m, from local agents’ measurements collected in a noisy environment. For a decentralized network and information spreading merely between directly neighboring nodes, we propose a non-parametric learning algorithm, that avoids raw data exchange and requires only mild a priori knowledge about m. Non-asymptotic estimation error bounds are derived for the proposed method. Its potential applications are illustrated through simulation experiments. Copyright © 2023, The Authors. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分