版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Applied Science and Technology Group University of California Berkeley BerkeleyCA94720 United States Applied Numerical Algorithms Group Lawrence Berkeley National Laboratory BerkeleyCA94720 United States
出 版 物:《SSRN》
年 卷 期:2023年
核心收录:
摘 要:We present a higher-order finite volume method for solving elliptic PDEs with jump conditions on interfaces embedded in a 2D Cartesian grid. Second, fourth, and sixth order accuracy is demonstrated on a variety of tests including problems with high-contrast and spatially varying coefficients, large discontinuities in the source term, and complex interface geometries. We include a generalized truncation error analysis based on cell-centered Taylor series expansions, which then define stencils in terms of local discrete solution data and geometric information. In the process, we develop a simple method based on Green s theorem for computing exact geometric moments directly from an implicit function definition of the embedded interface. This approach produces stencils with a simple bilinear representation, where spatially-varying coefficients and jump conditions can be easily included and finite volume conservation can be enforced. © 2023, The Authors. All rights reserved.