版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Shanghai Jiao Tong University China Eastern Institute for Advanced Study China The Department of Computer Science and Engineering The John Hopcroft Center The Shanghai Jiao Tong University China
出 版 物:《arXiv》 (arXiv)
年 卷 期:2023年
核心收录:
主 题:Network architecture
摘 要:The Shapley value is widely regarded as a trustworthy attribution metric. However, when people use Shapley values to explain the attribution of input variables of a deep neural network (DNN), it usually requires a very high computational cost to approximate relatively accurate Shapley values in real-world applications. Therefore, we propose a novel network architecture, the HarsanyiNet, which makes inferences on the input sample and simultaneously computes the exact Shapley values of the input variables in a single forward propagation. The HarsanyiNet is designed on the theoretical foundation that the Shapley value can be reformulated as the redistribution of Harsanyi interactions encoded by the network. Copyright © 2023, The Authors. All rights reserved.