咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >MCPI: Integrating Multimodal D... 收藏
arXiv

MCPI: Integrating Multimodal Data for Enhanced Prediction of Compound-Protein Interactions

作     者:Zhang, Li Li, Wenhao Guan, Haotian He, Zhiquan Cheng, Mingjun Wang, Han 

作者机构:School of Computer Science and Engineering Changchun University of Technology Changchun China School of Information Science and Technology Institute of Computational Biology Northeast Normal University Changchun China The College of Computer Science and Technology Jilin University Changchun China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen China 

出 版 物:《arXiv》 (arXiv)

年 卷 期:2023年

核心收录:

主  题:Forecasting 

摘      要:The identification of compound-protein interactions (CPI) plays a critical role in drug screening, drug repurposing, and combination therapy studies. The effectiveness of CPI prediction relies heavily on the features extracted from both compounds and target proteins. While various prediction methods employ different feature combinations, both molecular-based and network-based models encounter the common obstacle of incomplete feature representations. Thus, a promising solution to this issue is to fully integrate all relevant CPI features. This study proposed a novel model named MCPI, which is designed to improve the prediction performance of CPI by integrating multiple sources of information, including the PPI network, CCI network, and structural features of CPI. The results of the study indicate that the MCPI model outperformed other existing methods for predicting CPI on public datasets. Furthermore, the study has practical implications for drug development, as the model was applied to search for potential inhibitors among FDA-approved drugs in response to the SARS-CoV-2 pandemic. The prediction results were then validated through the literature, suggesting that the MCPI model could be a useful tool for identifying potential drug candidates. Overall, this study has the potential to advance our understanding of CPI and guide drug development efforts. © 2023, CC BY.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分