咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >High-fidelity parallel entangl... 收藏
arXiv

High-fidelity parallel entangling gates on a neutral atom quantum computer

作     者:Evered, Simon J. Bluvstein, Dolev Kalinowski, Marcin Ebadi, Sepehr Manovitz, Tom Zhou, Hengyun Li, Sophie H. Geim, Alexandra A. Wang, Tout T. Maskara, Nishad Levine, Harry Semeghini, Giulia Greiner, Markus Vuletić, Vladan Lukin, Mikhail D. 

作者机构:Department of Physics Harvard University CambridgeMA02138 United States QuEra Computing Inc. BostonMA02135 United States John A. Paulson School of Engineering and Applied Sciences Harvard University CambridgeMA02138 United States Department of Physics Research Laboratory of Electronics Massachusetts Institute of Technology CambridgeMA02139 United States 

出 版 物:《arXiv》 (arXiv)

年 卷 期:2023年

核心收录:

主  题:Error correction 

摘      要:The ability to perform entangling quantum operations with low error rates in a scalable fashion is a central element of useful quantum information processing [1]. Neutral atom arrays have recently emerged as a promising quantum computing platform, featuring coherent control over hundreds of qubits [2, 3] and any-to-any gate connectivity in a flexible, dynamically reconfigurable architecture [4]. The major outstanding challenge has been to reduce errors in entangling operations mediated through Rydberg interactions [5]. Here we report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel, surpassing the surface code threshold for error correction [6, 7]. Our method employs fast single-pulse gates based on optimal control [8], atomic dark states to reduce scattering [9], and improvements to Rydberg excitation and atom cooling [10]. We benchmark fidelity using several methods based on repeated gate applications [11, 12], characterize the physical error sources, and outline future improvements. Finally, we generalize our method to design entangling gates involving a higher number of qubits, which we demonstrate by realizing low-error three-qubit gates [13, 14]. By enabling high-fidelity operation in a scalable, highly connected system, these advances lay the groundwork for large-scale implementation of quantum algorithms [15], error-corrected circuits [7], and digital simulations [16]. Copyright © 2023, The Authors. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分