版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Mons Elect Power Engn Unit B-7000 Mons Belgium Catholic Univ Louvain B-1348 Louvain La Neuve Belgium
出 版 物:《IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS》 (IEEE Trans Ind Appl)
年 卷 期:2023年第59卷第6期
页 面:7116-7125页
核心收录:
主 题:Adequacy machine learning offshore wind VARMA wake effects
摘 要:Considering the increasing proportion of offshore wind generation in the energy mix, it becomes essential to properly account for aerodynamic effects that impact the power extracted from the wind. Indeed, due to computational constraints, offshore wind energy is currently modelled in a very simple and approximate way in adequacy studies, neglecting important factors such as wake effects. Hence, in this paper, data-driven proxy models are developed for learning the complex relation between free flow wind information and the resulting aggregated output power of wind farms. Those supervised Machine Learning-based models are used as fast and reliable surrogates of wake models, embedding their ability to describe the wind and turbines behavior, but with much lower computational times. These models are then included in an adequacy study built upon sequential Monte-Carlo simulations. The collected results are compared with those obtained with the current simplified modelling approach for offshore generation. We observe the importance of accurately representing intra-farm aerodynamic effects since reliability indices can be significantly underestimated when using the simplified modelling, thus hiding potential stressed conditions within the power system.