版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:College of Materials Science and Engineering State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology Center for Electron Microscopy Center for Membrane Separation and Water Science & Technology College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang 310014 P. R. China Institute of High Performance Computing Agency for Science Technology and Research 1 Fusionopolis Way #16-16 Connexis Singapore 138632 Singapore Key Laboratory of Flexible Electronics and Institute of Advanced Materials Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 P. R. China
出 版 物:《Angewandte Chemie》 (应用化学)
年 卷 期:2021年第133卷第19期
页 面:10708-10713页
学科分类:081704[工学-应用化学] 08[工学] 0817[工学-化学工程与技术]
主 题:electronic-structure engineering flexible Zn–air batteries layered double hydroxides metal–organic frameworks oxygen evolution reaction
摘 要:The 3d-transition-metal (hydro)oxides belong to a group of highly efficient, scalable and inexpensive electrocatalysts for widespread energy-related applications that feature easily tailorable crystal and electronic structures. We propose a general strategy to further boost their electrocatalytic activities by introducing organic ligands into the framework, considering that most 3d-metal (hydro)oxides usually exhibit quite strong binding with reaction intermediates and thus compromised activity due to the scaling relations. Involving weakly bonded ligands downshifts the d-band center, which narrows the band gap, and optimizes the adsorption of these intermediates. For example, the activity of the oxygen evolution reaction (OER) can be greatly promoted by ≈5.7 times over a NiCo layered double hydroxide (LDH) after a terephthalic acid (TPA)-induced conversion process, arising from the reduced energy barrier of the deprotonation of OH* to O*. Impressively, the proposed ligand-induced conversion strategy is applicable to a series of 3d-block metal (hydro)oxides, including NiFe 2 O 4 , NiCo 2 O 4 , and NiZn LDH, providing a general structural upgrading scheme for existing high-performance electrocatalytic systems.