版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Xidian Univ Natl KeyLaboratory Radar Signal Proc Xian 710071 Peoples R China Xidian Univ Sch Cyber Engn Xian 710126 Peoples R China Westlake Univ Sch Engn Hangzhou 310030 Zhejiang Peoples R China
出 版 物:《IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS》 (IEEE Trans. Neural Networks Learn. Sys.)
年 卷 期:2025年第36卷第4期
页 面:7407-7421页
核心收录:
学科分类:0808[工学-电气工程] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:National Natural Science Foundation of China
主 题:Feature extraction Transformers Task analysis Image reconstruction Frequency-domain analysis Hyperspectral imaging Spatial resolution Attention mechanism hyperspectral imaging image fusion vision transformers (ViTs)
摘 要:In hyperspectral image (HSI) processing, the fusion of the high-resolution multispectral image (HR-MSI) and the low-resolution HSI (LR-HSI) on the same scene, known as MSI-HSI fusion, is a crucial step in obtaining the desired high-resolution HSI (HR-HSI). With the powerful representation ability, convolutional neural network (CNN)-based deep unfolding methods have demonstrated promising performances. However, limited receptive fields of CNN often lead to inaccurate long-range spatial features, and inherent input and output images for each stage in unfolding networks restrict the feature transmission, thus limiting the overall performance. To this end, we propose a novel and efficient information-aware transformer-based unfolding network (ITU-Net) to model the long-range dependencies and transfer more information across the stages. Specifically, we employ a customized transformer block to learn representations from both the spatial and frequency domains as well as avoid the quadratic complexity with respect to the input length. For spatial feature extractions, we develop an information transfer guided linearized attention (ITLA), which transmits high-throughput information between adjacent stages and extracts contextual features along the spatial dimension in linear complexity. Moreover, we introduce frequency domain learning in the feedforward network (FFN) to capture token variations of the image and narrow the frequency gap. Via integrating our proposed transformer blocks with the unfolding framework, our ITU-Net achieves state-of-the-art (SOTA) performance on both synthetic and real hyperspectral datasets.