咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Classification and Recognition... 收藏

Classification and Recognition Method of Non-Cooperative Objects Based on Deep Learning

作     者:Wang, Zhengjia Han, Yi Zhang, Yiwei Hao, Junhua Zhang, Yong 

作者机构:Harbin Inst Technol Inst Precis Acousto Opt Instrument Sch Instrumentat Sci & Engn Harbin 150080 Peoples R China Tianjin Univ Sch Precis Instruments & Optoelect Engn Minist Educ Key Lab Optoelect Informat Technol Tianjin 300072 Peoples R China Tianjin Univ Key Lab MicrooptoElectroMech Syst MOEMS Technol Minist Educ Tianjin 300072 Peoples R China Tianjin Renai Coll Dept Phys Tianjin 301636 Peoples R China Harbin Inst Technol Natl Key Lab Sci & Technol Tunable Laser Harbin 150080 Peoples R China Harbin Inst Technol Sch Astronaut Dept Optoelect Informat Sci & Technol Harbin 150080 Peoples R China 

出 版 物:《SENSORS》 (传感器)

年 卷 期:2024年第24卷第2期

页      面:583页

核心收录:

学科分类:0710[理学-生物学] 071010[理学-生物化学与分子生物学] 0808[工学-电气工程] 07[理学] 0804[工学-仪器科学与技术] 0703[理学-化学] 

基  金:National Natural Science Foundation of China (NSFC) [62371163, 11504079] Tianjin Research Innovation Project for Postgraduate Students [2022KJ048] Chinese Academy of Sciences (CAS) [U2031142] 

主  题:non-cooperation target micro-Doppler effect laser coherence detection deep learning classification and recognition 

摘      要:Accurately classifying and identifying non-cooperative targets is paramount for modern space missions. This paper proposes an efficient method for classifying and recognizing non-cooperative targets using deep learning, based on the principles of the micro-Doppler effect and laser coherence detection. The theoretical simulations and experimental verification demonstrate that the accuracy of target classification for different targets can reach 100% after just one round of training. Furthermore, after 10 rounds of training, the accuracy of target recognition for different attitude angles can stabilize at 100%.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分