咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Stochastic Computing Convoluti... 收藏

Stochastic Computing Convolutional Neural Network Architecture Reinvented for Highly Efficient Artificial Intelligence Workload on Field-Programmable Gate Array

作     者:Yang Yang Lee Zaini Abdul Halim Mohd Nadhir Ab Wahab Tarik Adnan Almohamad 

作者机构:School of Electrical and Electronic EngineeringUniversiti Sains MalaysiaNibong Tebal 14300 Penang Malaysia School of Computer SciencesUniversiti Sains MalaysiaGelugor11800 PenangMalaysia Electrical-Electronics Engineering DepartmentFaculty of EngineeringKarabuk University78050 KarabukTurkiye 

出 版 物:《Research》 (研究(英文))

年 卷 期:2024年第2024卷第2期

页      面:55-79页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:supported in part by the Universiti Sains Malaysia under Grant RUI 1001/PELECT/8014152 

主  题:hardware Highly rendering 

摘      要:Stochastic computing(SC)has a substantial amount of study on application-specific integrated circuit(ASIC)design for artificial intelligence(AI)edge computing,especially the convolutional neural network(CNN)***,SC has little to no optimization on field-programmable gate array(FPGA).Scaling up the ASIC logic without FPGA-oriented designs is inefficient,while aggregating thousands of bitstreams is still challenging in the conventional *** research has reinvented several FPGA-efficient 8-bit SC CNN computing architectures,i.e.,SC multiplexer multiply-accumulate,multiply-accumulate function generator,and binary rectified linear unit,and successfully scaled and implemented a fully parallel CNN model on Kintex7 *** proposed SC hardware only compromises 0.14%accuracy compared to binary computing on the handwriting Modified National Institute of Standards and Technology classification task and achieved at least 99.72%energy saving per image feedforward and 31?more data throughput than modern *** to SC,early decision termination pushed the performance baseline exponentially with minimum accuracy loss,making SC CNN extremely lucrative for AI edge computing but limited to classification *** SC s inherent noise heavily penalizes CNN regression performance,rendering SC unsuitable for regression tasks.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分