咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Scale variant vehicle object r... 收藏

Scale variant vehicle object recognition by CNN module of multipooling- PCA process

作     者:Yuxiang Guo Itsuo Kumazawa Chuyo Kaku 

作者机构:Department of Information and Communications EngineeringTokyo Institute of TechnologyTokyo 152-8550Japan Research and Development CenterJiangsu Chaoli Electric Manufacture Co.Ltd.Shanghai 212321China 

出 版 物:《Journal of Intelligent and Connected Vehicles》 (智能网联汽车(英文))

年 卷 期:2023年第6卷第4期

页      面:227-236页

核心收录:

学科分类:08[工学] 080203[工学-机械设计及理论] 082303[工学-交通运输规划与管理] 0802[工学-机械工程] 082302[工学-交通信息工程及控制] 0823[工学-交通运输工程] 

基  金:supported by the National Natural Science Foundation of China(Grant No.51875340) 

主  题:object detection scale invariance spatial pyramid pooling multi-pooling convolutional neural network(CNN) 

摘      要:The moving vehicles present different scales in the image due to the perspective effect of different viewpoint *** premise of advanced driver assistance system(ADAS)system for safety surveillance and safe driving is early identification of vehicle targets in front of the ego *** recognition of the same vehicle at different scales requires feature learning with scale *** existing feature vector methods,the normalized PCA eigenvalues calculated from feature maps are used to extract scale-invariant *** study proposed a convolutional neural network(CNN)structure embedded with the module of multi-pooling-PCA for scale variant object *** validation of the proposed network structure is verified by scale variant vehicle image *** with scale invariant network algorithms of Scale-invariant feature transform(SIFT)and FSAF as well as miscellaneous networks,the proposed network can achieve the best recognition accuracy tested by the vehicle scale variant *** testify the practicality of this modified network,the testing of public dataset ImageNet is done and the comparable results proved its effectiveness in general purpose of applications.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分