咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >AGRICULTURAL UAV CROP SPRAYING... 收藏

AGRICULTURAL UAV CROP SPRAYING PATH PLANNING BASED ON PSO-A* ALGORITHM

基于PSO-A*算法的农业无人机作物喷洒路径规划

作     者:Fan, Lijuan 

作者机构:Xinxiang Vocat & Tech Coll Xinxiang 453006 Henan Peoples R China 

出 版 物:《INMATEH-AGRICULTURAL ENGINEERING》 (INMATEH Agric. Eng.)

年 卷 期:2023年第71卷第3期

页      面:625-636页

核心收录:

主  题:particle swarm optimization algorithm A* algorithm UAV path planning crop spraying operations 

摘      要:Currently, drones have been gradually applied in the field of agriculture, and have been widely used in various types of agricultural aerial operations such as precision sowing, pesticide spraying, and vegetation detection. The use of agricultural UAVs for pesticide spraying has become an important task in the agricultural plant protection process. However, in the crop spraying process of agricultural UAVs, it is necessary to traverse multiple spray points and plan obstacle avoidance paths, which greatly affects the efficiency of agricultural UAV crop spraying operations. To address the above issues, traditional particle swarm optimization (PSO) algorithms have strong solving capabilities, but they are prone to falling into local optima. Therefore, this study proposes an improved PSO algorithm combined with the A* algorithm, which introduces a nonlinear convergence factor balancing algorithm for global search and local development capabilities in the traditional PSO algorithm, and adopts population initialization to enhance population diversity, so that the improved PSO algorithm has stronger model solving capabilities. This study designs two scenarios for agricultural UAV crop spraying path planning: one without obstacles and one with obstacles. Experimental simulation results show that using the PSO algorithm to solve the obstacle-free problem and then using the A* algorithm to correct the path obstructed by obstacles in the obstacle scenario, the agricultural UAV crop spraying trajectory planning based on the PSO-A* algorithm is real and effective. This research can provide theoretical basis for agricultural plant protection and solve the premise of autonomous operation of UAVs.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分