咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >See Further Than CFAR: a Data-... 收藏
arXiv

See Further Than CFAR: a Data-Driven Radar Detector Trained by Lidar

作     者:Roldan, Ignacio Palffy, Andras Kooij, Julian F.P. Gavrila, Dariu M. Fioranelli, Francesco Yarovoy, Alexander 

作者机构:Group Department of Microelectronics Netherlands Group Department of Cognitive Robotics Delft University of Technology Delft Netherlands 

出 版 物:《arXiv》 (arXiv)

年 卷 期:2024年

核心收录:

主  题:Deep learning 

摘      要:In this paper, we address the limitations of traditional constant false alarm rate (CFAR) target detectors in automotive radars, particularly in complex urban environments with multiple objects that appear as extended targets. We propose a data-driven radar target detector exploiting a highly efficient 2D CNN backbone inspired by the computer vision domain. Our approach is distinguished by a unique cross-sensor supervision pipeline, enabling it to learn exclusively from unlabeled synchronized radar and lidar data, thus eliminating the need for costly manual object annotations. Using a novel large-scale, real-life multi-sensor dataset recorded in various driving scenarios, we demonstrate that the proposed detector generates dense, lidar-like point clouds, achieving a lower Chamfer distance to the reference lidar point clouds than CFAR detectors. Overall, it significantly outperforms CFAR baselines detection accuracy. Copyright © 2024, The Authors. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分