版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan 430070China College of Materials and Chemical EngineeringHezhou UniversityHezhou 542899China
出 版 物:《Journal of Wuhan University of Technology(Materials Science)》 (武汉理工大学学报(材料科学英文版))
年 卷 期:2024年第39卷第2期
页 面:410-416页
核心收录:
学科分类:07[理学] 070205[理学-凝聚态物理] 08[工学] 080501[工学-材料物理与化学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0702[理学-物理学]
基 金:Funded by the Young Top-notch Talent Cultivation Program of Hubei Province the Fundamental Research Funds for the Central Universities(WUT:2021IVA116 and WUT:2021CG015)
主 题:magnetron sputtering multiple magnetic resonance high permeability electromagnetic noise suppression
摘 要:To achieve high microwave permeability in wide-band for the micron-thick magnetic films,[Fe-Fe_(20)Ni_(80)/Cr]_(n) multilayer structure was proposed by co-sputtering Fe and FeNi to form the magnetic layers and Cr to form the *** multilayer structure contributes to the high permeability by reducing the coercivity and diminishing out-of-plane *** maximum imaginary permeability of[Fe-Fe_(20)Ni_(80)/Cr]_(n) multilayer film reaches a large value of 800 at 0.52 GHz even though its overall thickness exceeds 1μ***,the magnetic resonance frequency of the multilayer film can be modulated from 0.52 to 1.35 GHz by adjusting the sputtering power of Fe from 0 to 86 W,and its bandwidth for μ’’200(Δf) is as large as 2.0 *** desirable broad Δf of magnetic permeability,which can be well fitted by the Landau-Lifshitz-Gilbert equations,is due to dual magnetic resonances originated from double magnetic phases of Fe and FeNi that are of different saturation *** micron-thick multilayer films with high permeability in extended waveband are promising candidate for electromagnetic noise suppression application.