咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Troubleshooting Solution for T... 收藏
SSRN

Troubleshooting Solution for Traffic Congestion Control

作     者:Tong, Van Souihi, Sami Tran, Hai Anh Mellouk, Abdelhamid 

作者机构:School of Information and Communications Technology Hanoi University of Science and Technology Hanoi Viet Nam University of Paris-Est Creteil LISSI Vitry-sur-SeineF-94400 France 

出 版 物:《SSRN》 

年 卷 期:2024年

核心收录:

主  题:Adaptive algorithms 

摘      要:The Internet has existed since the 1970s as a means of data exchange between network devices in small networks. In the early stage, there was a small number of devices, but today there is an ever-increasing number of devices, leading to congestion in the network. Therefore, congestion control has attracted so much attention in the academic community and the industry for the past 30 years. Recently, Google has developed BBR (Bottleneck Bandwidth and Round-Trip Time), a rate-based congestion control algorithm. BBR controls transmission rates based on delivery rate and round-trip time (RTT). However, such a static congestion control algorithm (e.g., BBR, etc.) cannot achieve high performance in various network conditions (e.g., low bandwidth, etc.). Concretely, these static algorithms cannot adapt to the dynamic changes of the network environment. Therefore, in this paper, we propose an adaptive algorithm (called ABBR) for congestion control in next-generation networks. ABBR takes into account the reinforcement learning algorithm to learn relevant policies to change the transmission rate corresponding to each congestion control algorithm to optimize long-term performance. The experimental results show that our proposal can achieve good performance in terms of throughput, RTT, and fairness compared to the benchmarks. © 2024, The Authors. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分