版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Virginia Dept Comp Sci Charlottesville VA 22903 USA
出 版 物:《IEEE ROBOTICS AND AUTOMATION LETTERS》 (IEEE Robot. Autom.)
年 卷 期:2024年第9卷第6期
页 面:5292-5297页
核心收录:
学科分类:0808[工学-电气工程] 08[工学] 0811[工学-控制科学与工程]
主 题:Deep learning methods model learning for control dynamics
摘 要:Autonomous racing is a critical research area for autonomous driving, presenting significant challenges in vehicle dynamics modeling, such as balancing model precision and computational efficiency at high speeds (280 km/h), where minor errors in modeling have severe consequences. Existing physics-based models for vehicle dynamics require elaborate testing setups and tuning, which are hard to implement, time-intensive, and cost-prohibitive. Conversely, purely data-driven approaches do not generalize well and cannot adequately ensure physical constraints on predictions. This letter introduces Deep Dynamics, a physics-constrained neural network (PCNN) for autonomous racecar vehicle dynamics modeling. It merges physics coefficient estimation and dynamical equations to accurately predict vehicle states at high speeds. A unique Physics Guard layer ensures internal coefficient estimates remain within their nominal physical ranges. Open-loop and closed-loop performance assessments, using a physics-based simulator and full-scale autonomous Indy racecar data, highlight Deep Dynamics as a promising approach for modeling racecar vehicle dynamics.