版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
出 版 物:《电脑学刊》
年 卷 期:2022年第33卷第3期
页 面:187-194页
主 题:rescue robot potential field algorithm reinforcement learning optimal route
摘 要:How rescue robots reach their destinations quickly and efficiently has become a hot research topic in recent years. Aiming at the complex unstructured environment faced by rescue robots, this paper proposes an artificial potential field algorithm based on reinforcement learning. Firstly, use the traditional artificial potential field method to perform basic path planning for the robot. Secondly, in order to solve the local minimum problem in planning and improve the robot s adaptive ability, the reinforcement learning algorithm is run by fixing preset parameters on the simulation platform. After intensive training, the robot continuously improves the decision-making ability of crossing typical concave obstacles. Finally, through simulation experiments, it is concluded that the rescue robot can combine the artificial potential field method and reinforcement learning to improve the ability to adapt to the environment, and can reach the destination with the optimal route.