版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Nanjing Univ Posts & Telecommun Inst Adv Technol Carbon Neutral Nanjing 210023 Peoples R China Nanjing Univ Finance & Econ Coll Informat Engn Nanjing 210023 Peoples R China Nanjing Univ Posts & Telecommun Coll Automat Nanjing 210023 Peoples R China Nanjing Univ Posts & Telecommun Coll Artificial Intelligence Nanjing 210023 Peoples R China Nanjing Univ Posts & Telecommun Sch Internet Things Nanjing 210023 Peoples R China
出 版 物:《IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING》 (IEEE Trans. Netw. Sci. Eng.)
年 卷 期:2024年第11卷第4期
页 面:3800-3811页
核心收录:
学科分类:0808[工学-电气工程] 08[工学] 0701[理学-数学]
基 金:National Key R&D Program of China
主 题:Games Transform coding Differential games Nash equilibrium Topology Symmetric matrices Sensors Multiagent systems pursuit-evasion games differential graphical games reinforcement learning
摘 要:This paper designs optimal control polices for networked multiagent pursuit-evasion game (MPEG) problems based on reinforcement learning (RL) technique. Depending on the number of evaders, MPEG is formulated into several simpler multiple-pursuer single-evader games (MPSEGs) by a divide and conquer approach. Then we propose optimal control policies for all the agents in each MPSEG, which constitute a distributed Nash equilibrium, and provide the capturability and Nash equilibrium analysis. Finally, a data-driven RL algorithm is developed to online learn optimal control polices using measurable behavior data. A simulation example is given to verify the effectiveness of the proposed approach.