版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Illinois Dept Mech Sci & Engn Urbana IL 61801 USA Univ Illinois Dept Aerosp Engn Urbana IL 61801 USA Univ Illinois Dept Civil & Environm Engn Urbana IL 61801 USA Univ Illinois Dept Geol Urbana IL 61801 USA
出 版 物:《MICROMACHINES》 (微型机械)
年 卷 期:2024年第15卷第5期
页 面:629-629页
核心收录:
学科分类:08[工学] 0804[工学-仪器科学与技术] 0805[工学-材料科学与工程(可授工学、理学学位)] 0703[理学-化学] 0802[工学-机械工程] 0702[理学-物理学]
基 金:UK Research and Innovation UKRI (105409)
主 题:micro-scale positioning particle tracking velocimetry fluid mechanics data-driven method deep learning neural networks
摘 要:Micro-scale positioning techniques have become essential in numerous engineering systems. In the field of fluid mechanics, particle tracking velocimetry (PTV) stands out as a key method for tracking individual particles and reconstructing flow fields. Here, we present an overview of the micro-scale particle tracking methodologies that are predominantly employed for particle detection and flow field reconstruction. It covers various methods, including conventional and data-driven techniques. The advanced techniques, which combine developments in microscopy, photography, image processing, computer vision, and artificial intelligence, are making significant strides and will greatly benefit a wide range of scientific and engineering fields.