咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Micro-Scale Particle Tracking:... 收藏

Micro-Scale Particle Tracking: From Conventional to Data-Driven Methods

作     者:Wang, Haoyu Hong, Liu Chamorro, Leonardo P. 

作者机构:Univ Illinois Dept Mech Sci & Engn Urbana IL 61801 USA Univ Illinois Dept Aerosp Engn Urbana IL 61801 USA Univ Illinois Dept Civil & Environm Engn Urbana IL 61801 USA Univ Illinois Dept Geol Urbana IL 61801 USA 

出 版 物:《MICROMACHINES》 (微型机械)

年 卷 期:2024年第15卷第5期

页      面:629-629页

核心收录:

学科分类:08[工学] 0804[工学-仪器科学与技术] 0805[工学-材料科学与工程(可授工学、理学学位)] 0703[理学-化学] 0802[工学-机械工程] 0702[理学-物理学] 

基  金:UK Research and Innovation  UKRI  (105409) 

主  题:micro-scale positioning particle tracking velocimetry fluid mechanics data-driven method deep learning neural networks 

摘      要:Micro-scale positioning techniques have become essential in numerous engineering systems. In the field of fluid mechanics, particle tracking velocimetry (PTV) stands out as a key method for tracking individual particles and reconstructing flow fields. Here, we present an overview of the micro-scale particle tracking methodologies that are predominantly employed for particle detection and flow field reconstruction. It covers various methods, including conventional and data-driven techniques. The advanced techniques, which combine developments in microscopy, photography, image processing, computer vision, and artificial intelligence, are making significant strides and will greatly benefit a wide range of scientific and engineering fields.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分