版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Victoria Dept Elect & Comp Engn POB 1700STN CSC Victoria BC V8W 2Y2 Canada
出 版 物:《JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY》 (J. Algorithms Comput. Technol.)
年 卷 期:2024年第18卷
核心收录:
学科分类:07[理学] 070102[理学-计算数学] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:The author(s) received no financial support for the research authorship and/or publication of this article
主 题:Code-based cryptography inverse matrix error-correction coding blockchain post quantum cryptography public-key cryptosystem
摘 要:The applications of non-square binary matrices span many domains including mathematics, error-correction coding, machine learning, data storage, navigation signals, and cryptography. In particular, they are employed in the McEliece and Niederreiter public-key cryptosystems. For the parity check matrix of these cryptosystems, a systematic non-square binary matrix H with dimensions m x n, n m, m = n - k, there exist 2m((n -m) )distinct inverse matrices. This article presents an algorithm to generate these matrices as well as a method to construct a random inverse matrix. Then it is extended to non-square matrices in arbitrary fields. This overcomes the limitations of the Moore-Penrose and Gauss-Jordan methods. The application to public-key cryptography is also discussed.