版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:School of Artificial Intelligence Optics and Electronics Northwestern Polytechnical University China School of Computer Science Northwestern Polytechnical University China Air Traffic Control and Navigation College Air Force Engineering University China Cyberspace Institute of Advanced Technology Guangzhou University China
出 版 物:《arXiv》 (arXiv)
年 卷 期:2024年
核心收录:
摘 要:Graph Neural Network (GNN)-based fake news detectors apply various methods to construct graphs, aiming to learn distinctive news embeddings for classification. Since the construction details are unknown for attackers in a black-box scenario, it is unrealistic to conduct the classical adversarial attacks that require a specific adjacency matrix. In this paper, we propose the first general black-box adversarial attack framework, i.e., General Attack via Fake Social Interaction (GAFSI), against detectors based on different graph structures. Specifically, as sharing is an important social interaction for GNN-based fake news detectors to construct the graph, we simulate sharing behaviors to fool the detectors. Firstly, we propose a fraudster selection module to select engaged users leveraging local and global information. In addition, a post injection module guides the selected users to create shared relations by sending posts. The sharing records will be added to the social context, leading to a general attack against different detectors. Experimental results on empirical datasets demonstrate the effectiveness of GAFSI. Copyright © 2024, The Authors. All rights reserved.