版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Department of Computer Science and EngineeringUniversity of South CarolinaColumbiaSCUSA Department of Mechanical EngineeringUniversity of South CarolinaColumbiaSCUSA
出 版 物:《npj Computational Materials》 (计算材料学(英文))
年 卷 期:2024年第10卷第1期
页 面:1753-1766页
核心收录:
学科分类:08[工学] 080502[工学-材料学] 0805[工学-材料科学与工程(可授工学、理学学位)]
基 金:supported in part by National Science Foundation under the grants 2110033 OAC-2311203 and 2320292
主 题:property prediction distribution
摘 要:In real-world materials research,machine learning(ML)models are usually expected to predict and discover novel exceptional materials that deviate from the known *** is thus a pressing question to provide an objective evaluation ofMLmodel performances in property prediction of out-ofdistribution(OOD)materials that are different fromthe training *** performance evaluation of materials property prediction models through the random splitting of the dataset frequently results in artificially high-performance assessments due to the inherent redundancy of typical material datasets.