咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Structure-based out-of-distrib... 收藏

Structure-based out-of-distribution(OOD)materials property prediction:a benchmark study

作     者:Sadman Sadeed Omee Nihang Fu Rongzhi Dong Ming Hu Jianjun Hu 

作者机构:Department of Computer Science and EngineeringUniversity of South CarolinaColumbiaSCUSA Department of Mechanical EngineeringUniversity of South CarolinaColumbiaSCUSA 

出 版 物:《npj Computational Materials》 (计算材料学(英文))

年 卷 期:2024年第10卷第1期

页      面:1753-1766页

核心收录:

学科分类:08[工学] 080502[工学-材料学] 0805[工学-材料科学与工程(可授工学、理学学位)] 

基  金:supported in part by National Science Foundation under the grants 2110033 OAC-2311203 and 2320292 

主  题:property prediction distribution 

摘      要:In real-world materials research,machine learning(ML)models are usually expected to predict and discover novel exceptional materials that deviate from the known *** is thus a pressing question to provide an objective evaluation ofMLmodel performances in property prediction of out-ofdistribution(OOD)materials that are different fromthe training *** performance evaluation of materials property prediction models through the random splitting of the dataset frequently results in artificially high-performance assessments due to the inherent redundancy of typical material datasets.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分