版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:School of Science and Engineering The Chinese University of Hong Kong Guangdong Shenzhen518172 China Department of Mathematics Texas State University TX78666 United States Department of Mathematics University of Central Florida United States Shenzhen International Center For Industrial And Applied Mathematics Shenzhen Research Institute of Big Data China
出 版 物:《arXiv》 (arXiv)
年 卷 期:2024年
核心收录:
摘 要:We introduce a new concept of the locally conservative flux and investigate its relationship with the compatible discretization pioneered by Dawson, Sun and Wheeler [11]. We then demonstrate how the new concept of the locally conservative flux can play a crucial role in obtaining the L2 norm stability of the discontinuous Galerkin finite element scheme for the transport in the coupled system with flow. In particular, the lowest order discontinuous Galerkin finite element for the transport is shown to inherit the positivity and maximum principle when the locally conservative flux is used, which has been elusive for many years in literature. The theoretical results established in this paper are based on the equivalence between Lesaint-Raviart discontinuous Galerkin scheme and Brezzi-Marini-Süli discontinuous Galerkin scheme for the linear hyperbolic system as well as the relationship between the Lesaint-Raviart discontinuous Galerkin scheme and the characteristic method along the streamline. Sample numerical experiments have also been performed to justify our theoretical findings. © 2024, CC BY.