咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Stability and numerical disper... 收藏

Stability and numerical dispersion of symplectic scheme

作     者:Huang, Zhi-Xiang Wu, Xian-Liang 

作者机构:Key Laboratory of Computing and Signal Processing Anhui Univ. Hefei 230039 China 

出 版 物:《Tien Tzu Hsueh Pao/Acta Electronica Sinica》 (Tien Tzu Hsueh Pao)

年 卷 期:2006年第34卷第3期

页      面:535-538页

核心收录:

学科分类:080804[工学-电力电子与电力传动] 080805[工学-电工理论与新技术] 0808[工学-电气工程] 0809[工学-电子科学与技术(可授工学、理学学位)] 081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 0702[理学-物理学] 

主  题:Electromagnetic field theory 

摘      要:A new scheme for approximating the solution of 2D Maxwell s equations using the symplectic scheme is introduced. The scheme is obtained by discretizing the Maxwell s equations in the time direction based on symplectic scheme with different orders, and then evaluated the equation in the spatial direction with a second or fourth order finite difference approximation. The stability condition and numerical dispersion of the schemes with different orders are derived. The results are demonstrated by theoretical analysis and numerical simulation, the stability and numerical dispersion of the scheme with first and second order symplectic scheme (T1S2, T2S2) are identical to FDTD with a second order approximation in spatial direction. Although the high order schemes have almost the same stability as the FDTD, the fourth order scheme with a fourth order approximation in spatial direction (T4S4) has the superior numerical dispersion-isotropic properties of the scheme. Numerical results show that high order symplectic scheme is superior compared with FDTD for solving two-dimensional TMz case.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分